Thermal Bypass Assembly

This thermal bypass valve is ideally suited for hydrostatic drive circuits which require fast warm-up, controlled fluid temperature, and low return line back pressure. When installed in the return line of a hydraulic circuit that employs an oil cooler, this device will modulate fluid temperature by either shifting return line flow through the cooler, or bypassing directly to the reservoir. In addition, a built-in pressure relief function automatically relieves excess pressure to the reservoir should the cooler become restricted and resultant pressure drop become too high for the cooler circuit.

Standard Shift Temperatures
- 100°F (38°C)
- 120°F (49°C)
- 140°F (60°C)
- 160°F (71°C)

Full Shift (Cooler Port Open) Temperatures
Shift temperature plus 25°F (14°C)

Relief Valve Setting 65 PSI (4.5 BAR) Consult factory for other pressure settings.

Maximum Operating Pressure 250 PSI (17 BAR)

Proof Pressure 300 PSI (21 BAR)

Minimum Burst Pressure
- Up to the full shift temperature: 325 PSI (22 BAR)
- Above the full shift temperature: 600 PSI (41 BAR)

Minimum Operating Temperature -30°F (-34°C)

Maximum Operating Temperature Shift temperature plus 75°F (24°C)

Maximum Flow Rating 60 GPM (227 l/m)

Leakage @ 250 PSI (17 BAR) and 60 GPM (227 l/m) Inlet Flow
- Cooler Port: 0.5 GPM (2 l/m) maximum up to 5°F (3°C) before shift temp.
- 1.0 GPM (4 l/m) maximum from 5°F (3°C) before shift to shift.
- Tank Port: 0.10 GPM (0.4 l/m) maximum

Operating Fluid Mineral base hydraulic fluids

Construction Aluminum die-cast housing

Operating Characteristics
- Mode 1: At temperatures below the shift temperature oil flows from inlet to tank port.
- Mode 2: At temperatures between the start of shift and full shift the flow from the inlet port is divided between the cooler and tank ports.
- Mode 3: At temperatures above the full shift temperature inlet flow is through the cooler port.
- Mode 4: At temperatures above the full shift temperature the excess pressure is relieved through the tank port.

For 120°F Shift Temperature

![Diagram of operating modes](image)

Graphic Symbol

NOTE: If the temperature drops below 145°F the valve will shift back to modes 2 or 1.
Thermal Bypass Assembly

Pressure Drop (Mobile DTE 26 OIL)

Inlet Port Thru Tank Port
@ 100°F (38°C) (300 SUS)

Inlet Port Over Integral Relief Valve
@ 170°F (77°C) (78 SUS)

Inlet Port Thru Cooler Port
@ 145°F (63°C) (110 SUS)

NOTE: Pressure drop shown is added to relief valve crack pressure for total pressure drop.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Shift Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>65654</td>
<td>100°F (38°C)</td>
</tr>
<tr>
<td>65655</td>
<td>120°F (49°C)</td>
</tr>
<tr>
<td>65656</td>
<td>140°F (60°C)</td>
</tr>
<tr>
<td>65657</td>
<td>160°F (71°C)</td>
</tr>
</tbody>
</table>

How to Order
Consult factory for pricing and lead time

Part Number
Pressure Setting
65 = Standard, 65 PSI
Optional pressure settings available in 5 PSI increments, up to 85 PSI.

Thermal Bypass Assembly
Three-Way Thermostatic Valves

½", ¾", 1", 1½" & 2" NPT Ports*

- Self-contained
- Wide range of temperatures
- Rugged construction
- Non-adjustable
- Heavy duty
- Operate in any position
- Tamper-proof
- Replaceable element
- Compact

Materials

Housing Grey iron (steel or bronze optional)
125 PSI maximum operating pressure

O-Ring Seals Viton (Buna N optional)

*3", 4" and 6" Flange Models also available.

Operation

TTP thermostatic valves use the principle of expanding wax. A self-contained power element activates a stainless steel sliding valve that provides a positive three-way valve action. All temperature settings are factory set. Elements are field replaceable to obtain the same, or a new bypass temperature setting.

On starting, total flow is in the bypass mode. As the fluid temperature rises, some fluid is diverted to the cooling system. As fluid temperature continues to rise, more flow is diverted until the valve is fully stroked. At this point, all the flow is diverted to the cooler. With respect to temperature ranges, the "nominal" temperature represents the "operating temperature."

Valves are acceptable for oil or water service.

Applications

Three Way Thermostatic Valves may be installed for either mixing or diverting modes of operation at the preference of the user. They may be mounted in any plane.

When installed as a mixing valve, it is on the cold side of the application, and mixes hot liquid with cooled liquid to discharge the proper temperature fluid to the process.

When installed as a diverting valve, it is on the hot side of the application, and bypasses the cold liquid allowing the system to warm up, then directs the hot liquid to the cooler.

Temperature settings are nominal. 110°F and 140°F are standard. Other settings are available upon request. The valves begin to "shift" (open) about 10°F below the nominal temperature setting and are fully shifted about 10°F above.

Typical Installation

Hydraulic Power Units Diverting mode 110°F
Air Compressors Mixing mode 140°F
Mobile Oil Coolers Diverting mode 110°F
Radiators Diverting mode 190°F
Three-Way Thermostatic Valves

Pressure Drop Curves

Dimensions and Part Numbers

<table>
<thead>
<tr>
<th>Port Size</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>⅛” NPT</td>
<td>66037-110°F</td>
</tr>
<tr>
<td>⅛” NPT</td>
<td>66037-140°F</td>
</tr>
<tr>
<td>⅜” NPT</td>
<td>66038-110°F</td>
</tr>
<tr>
<td>⅜” NPT</td>
<td>66038-140°F</td>
</tr>
<tr>
<td>⅜” NPT</td>
<td>66039-110°F</td>
</tr>
<tr>
<td>⅜” NPT</td>
<td>66039-140°F</td>
</tr>
<tr>
<td>#16 SAE</td>
<td>67365-110°F</td>
</tr>
<tr>
<td>#16 SAE</td>
<td>67365-140°F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port Size</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1⅛” NPT</td>
<td>66040-110°F</td>
</tr>
<tr>
<td>1⅛” NPT</td>
<td>66040-140°F</td>
</tr>
<tr>
<td>#24 SAE</td>
<td>67760-110°F</td>
</tr>
<tr>
<td>#24 SAE</td>
<td>67760-140°F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port Size</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2” NPT</td>
<td>66041-105°F</td>
</tr>
<tr>
<td>2” NPT</td>
<td>66041-140°F</td>
</tr>
</tbody>
</table>

NOTE: All three ports on any one valve have the same thread size.
Three-Way Thermostatic Valves

Special Temperature Ranges

<table>
<thead>
<tr>
<th>½" - ¾" - 1" NPT</th>
<th>1½" NPT</th>
<th>2" NPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Numbers</td>
<td></td>
<td>Part Numbers</td>
</tr>
<tr>
<td>65974</td>
<td>65977</td>
<td>65978</td>
</tr>
<tr>
<td>65975</td>
<td>66040</td>
<td>66041</td>
</tr>
<tr>
<td>65976</td>
<td>67760</td>
<td></td>
</tr>
<tr>
<td>66037</td>
<td></td>
<td>(#24 SAE)</td>
</tr>
<tr>
<td>66038</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66039</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67365</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(#16 SAE)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valve Part Number Example

EXAMPLE: 1" NPT, Part Number 66039-90 indicates the 1" NPT valve with a nominal shift temperature of 90°F. The actual operating temperature range in this example is 80-100°F. The valve begins to open at 80°F, and is fully open at 100°F.

How to Order

Consult factory for pricing and lead time

Valve Part Number - **Nominal Temperature Setting** °F